String Perturbation Theory and
 Automorphic Forms

Marcus Berg
Karlstad University, Sweden

Lise Meitner Symposium Gothenburg, Sep 2012

Plan

- String perturbation theory with D-branes and O-planes
- Some physics
- Modular forms, automorphic forms
- Review of a few old results (nonholomorphic Eisenstein series)
- New developments
(twisted Eisenstein, Niebur-Poincaré series)

String perturbation theory: two expansions

Goal: compute string loop amplitude

Integrate:

- Vertex operator positions
- String worldsheet moduli
(cf. Feynman diagram in coordinate space integrate over vertex positions)

Goal: compute string loop amplitude in the presence of D-branes

Dirichlet boundary condition for quantizing open strings

(semi-)classical, string tree level

quantum, string one-loop

Worldsheet surfaces ($\chi=0$)

D-brane at arbitrary position ϕ

Cylinder (annulus) diagram

Other worldsheet surfaces ($\chi=0$)

orientifold plane (spacetime fixed plane of worldsheet parity)

Möbius strip

Klein bottle

Why quantum effective action (one-loop)?

- Stabilization: calculate the complete moduli-dependence of the effective action to one-loop order (relevant in e.g. KKLT $W_{\text {nonpert }}$): can end up being classical or quantum, for geometric and some brane moduli
- Brane dynamics on stabilized background: inflationary cosmology, modified gravity
- Softly broken supersymmetry: field space curvature of Kähler metrics (e.g. "large volume scenario"), give low-energy spectrum and mixings, flavor...

Classical modular form

$$
\gamma \cdot \tau=\frac{a \tau+b}{c \tau+d} \quad S L(2, \mathbb{Z})
$$

$$
f(\gamma \cdot \tau)=(c \tau+d)^{w} f(\tau)
$$

Classical modular form: reflection formula

$$
q=e^{2 \pi i \tau}
$$

$$
\begin{aligned}
& f(\tau)=c(0)+\sum_{n=1}^{\infty} c(n) q^{n} \quad \varphi(s)=\sum_{n=1}^{\infty} \frac{c(n)}{n^{s}} \\
& f(i / y)=(i y)^{k} f(i y) \\
& \quad(2 \pi)^{-s} \Gamma(s) \varphi(s)=\int_{0}^{\infty}(f(i y)-c(0)) y^{s-1} d y
\end{aligned}
$$

Classical modular form: reflection formula

$$
\begin{aligned}
& f(\tau)=c(0)+\sum_{n=1}^{\infty} c(n) q^{n} \quad \varphi(s)=\sum_{n=1}^{\infty} \frac{c(n)}{n^{s}} \\
& f(i / y)=(i y)^{k} f(i y) \\
& (2 \pi)^{-s} \Gamma(s) \varphi(s)=\int_{0}^{\infty}(f(i y)-c(0)) y^{s-1} d y \\
& (2 \pi)^{-s} \Gamma(s) \varphi(s)=(-1)^{k / 2}(2 \pi)^{s-k} \Gamma(k-s) \varphi(k-s)
\end{aligned}
$$

cf. Riemann zeta

$$
f \rightarrow \vartheta_{3}
$$

$$
\pi^{-s} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{\frac{s-1}{2}} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)
$$

Classical modular form

Define Petersson slash operator:

$$
\begin{aligned}
& \left(\left.f\right|_{w} \gamma\right)(\tau)=(c \tau+d)^{-w} f(\gamma \cdot \tau) \\
& \gamma \cdot \tau=\frac{a \tau+b}{c \tau+d} \quad S L(2, \mathbb{Z})
\end{aligned}
$$

modular form-ness reexpressed as slash invariance:

$$
\left(\left.f\right|_{w} \gamma\right)(\tau)=f(\tau)
$$

Automorphic form

Poincaré series, "method of images" from "seed" f

$$
\begin{array}{cr}
P(f, w ; \tau)=\left.\frac{1}{2} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} f\right|_{w} \gamma & \\
\left(\left.f\right|_{w} \gamma\right)(\tau)=(c \tau+d)^{-w} f(\gamma \cdot \tau) & \Gamma_{\infty}=\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right) \\
(\tau \rightarrow \tau+n)
\end{array}
$$

Example: $\quad f(\tau)=q^{-\kappa}$

$$
P(\kappa, w ; \tau)=\frac{1}{2} \sum_{(c, d)=1}(c \tau+d)^{-w} e^{-2 \pi i \kappa \gamma \cdot \tau}
$$

(holomorphic Eisenstein series for $\kappa=0$, not convergent for $w \leq 2$)

Automorphic form

Poincaré series, "method of images" from "seed" f

$$
\begin{array}{cc}
P(f, w ; \tau)=\left.\frac{1}{2} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} f\right|_{w} \gamma & \\
\left(\left.f\right|_{w} \gamma\right)(\tau)=(c \tau+d)^{-w} f(\gamma \cdot \tau) & \Gamma_{\infty}=\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right)
\end{array}
$$

Can we get away with only holomorphic quantities? No.
gauge theory
(open strings)

holomorphic
vertex operator
gravity
(closed strings)

nonholomorphic vertex operator

Automorphic form: nonholomorphic Eisenstein series

seed $\quad f(\tau)=\tau_{2}^{s}$

$$
\begin{gathered}
\tau_{2} \rightarrow \frac{\tau_{2}}{|c \tau+d|^{2}} \quad \tau_{2}=\operatorname{Im} \tau \\
E_{s}(z, \tau)=\sum_{(n, m)}^{\prime} \frac{\tau_{2}^{s}}{|n+m \tau|^{2 s}} \\
\text { weight zero! } \quad \text { e.g. Nakahara's book }
\end{gathered}
$$

Automorphic form: nonholomorphic Eisenstein series

$$
\text { seed } \quad f(\tau)=\tau_{2}^{s}
$$

$$
\begin{aligned}
\tau_{2} & \rightarrow \frac{\tau_{2}}{|c \tau+d|^{2}} \quad \tau_{2}=\operatorname{Im} \tau \\
E_{s}(z, \tau) & =\sum_{(n, m)}^{\prime} \frac{\tau_{2}^{s}}{|n+m \tau|^{2 s}}
\end{aligned}
$$

Automorphic form: "generalized" nonholomorphic Eisenstein series

$$
\begin{array}{ll}
\text { seed } f(\tau)=\tau_{2}^{s} \exp \left(-2 \pi i \frac{z_{2}}{\tau_{2}}\right) & \begin{array}{l}
z_{2}=\operatorname{Im} z \\
\tau_{2}=\operatorname{Im} \tau
\end{array}
\end{array}
$$

$$
\begin{gathered}
E_{s}(z, \tau)=\sum_{(n, m)}^{\prime} \frac{\tau_{2}^{s}}{|n+m \tau|^{2 s}} \exp (2 \pi i \underbrace{\underbrace{z-\bar{\tau}}_{m x+n y} \frac{z(n+m \bar{z})-\bar{z}(n+m \tau)}{\tau-\bar{\tau}}}_{z=-x+\tau y})
\end{gathered}
$$

Worldsheet Green's functions

$$
\begin{gathered}
\frac{2}{\alpha^{\prime}} \bar{\partial}_{\bar{z}} \partial_{z} G_{B}=-\delta^{2}\left(z_{12}\right)+\frac{1}{\operatorname{vol}} \\
G_{B}\left(z_{1}, z_{2}, \tau\right)=-\frac{\alpha^{\prime}}{2} \ln \left|\frac{\vartheta_{1}\left(z_{12}, \tau\right)}{\vartheta_{1}^{\prime}(0, \tau)}\right|^{2}+\alpha^{\prime} \frac{\pi\left(\operatorname{Im} z_{12}\right)^{2}}{\operatorname{Im} \tau} \\
\bar{\partial}_{\bar{z}} G_{F}=\delta^{2}\left(z_{12}\right) \quad z_{12}=z_{1}-z_{2} \\
G_{F}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]\left(z_{1}, z_{2}, \tau\right)=\frac{\vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]\left(z_{12}\right) \vartheta_{1}^{\prime}(0)}{\vartheta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](0) \vartheta_{1}\left(z_{12}\right)}, \quad(\alpha, \beta) \neq(1 / 2,1 / 2)
\end{gathered}
$$

WorIdsheet Green's functions (alternative)

$$
\frac{2}{\alpha^{\prime}} \bar{\partial}_{\bar{z}} \partial_{z} G_{B}=-\delta^{2}\left(z_{12}\right)+\frac{1}{\mathrm{vol}}
$$

plane wave expansion

$$
\begin{aligned}
\omega & =m+n \tau \\
p & =\frac{i}{\tau_{2}}(n-m \tau)
\end{aligned}
$$

$$
G_{B}(z, \tau)=\sum_{m, n}^{\prime} \frac{1}{|p|^{2}} e^{2 \pi i(p \bar{z}+\bar{p} z)}=\sum_{m, n}^{\prime} \frac{\tau_{2}^{2}}{|n-m \tau|^{2}} e^{2 \pi i(p \bar{z}+\bar{p} z)}
$$

Worldsheet Green's functions (alternative)

$$
\begin{aligned}
& \frac{2}{\alpha^{\prime}} \bar{\partial}_{\bar{z}} \partial_{z} G_{B}=-\delta^{2}\left(z_{12}\right)+\frac{1}{\mathrm{vol}} \\
& \text { plane wave expansion } \\
& \omega=m+n \tau \\
& p=\frac{i}{\tau_{2}}(n-m \tau) \\
& G_{B}(z, \tau)=\sum_{m, n}^{\prime} \frac{1}{|p|^{2}} e^{2 \pi i(p \bar{z}+\bar{p} z)}=\sum_{m, n}^{\prime} \frac{\tau_{2}^{2}}{|n-m \tau|^{2}} e^{2 \pi i(p \bar{z}+\bar{p} z)}
\end{aligned}
$$

generalized nonholomorphic Eisenstein series E_{1}

A few places where these functions have appeared

... if there is a spacetime torus
(or orbifold thereof)
with moduli S, T, U, ϕ

- Gauge coupling loop corrections
- Kähler potential loop corrections

Gauge coupling correction

Dixon, Kaplunovsky, Louis '91
M.B., Haack, Körs '04

$$
\Delta K_{\phi \bar{\phi}} \sim \Delta \frac{1}{g^{2}}
$$

$$
\begin{aligned}
\Delta \frac{1}{g_{\mathrm{D} 7}^{2}}(\phi, U)=-\frac{\alpha^{\prime}}{2} \ln \left|\frac{\vartheta_{1}(\phi, U)}{\vartheta_{1}^{\prime}(0, U)}\right|^{2}+\alpha^{\prime} \frac{\pi(\operatorname{Im} \phi)^{2}}{\operatorname{Im} U} \\
f^{1-\text { loop }}=-2 \ln \vartheta_{1}(\phi, U)
\end{aligned}
$$

Gauge coupling correction

Plays a role if nonperturbative W :

Ganor '96
M.B., Hack, Kors '04

$$
\begin{aligned}
& W_{\mathrm{np}}=A e^{-a f}=A e^{-a\left(f^{\text {tree }}+f^{1-\mathrm{loop}}+\ldots\right)} \\
&=\underbrace{A \cdot\left(\vartheta_{1}(\phi / 2 \pi, U)^{2 a} \cdots\right)}_{\tilde{A}(\phi, U)} e^{-a\left(f^{\text {tree }}+\ldots\right)} \\
& a \sim 1 / N_{\mathrm{D} 7}
\end{aligned}
$$

Kähler potential correction

M.B., Haack, Körs, ‘05
"integrate" one-loop corrected Kähler metric to get oneloop corrected Kähler potential:

$$
\begin{aligned}
K= & -\ln ((S+\bar{S})(T+\bar{T})(U+\bar{U})) \\
& -\ln \left(1-\frac{1}{8 \pi} \sum_{i} \frac{N_{i}\left(\phi_{i}+\bar{\phi}_{i}\right)^{2}}{(T+\bar{T})(U+\bar{U})}-\frac{1}{128 \pi^{6}} \sum_{i} \frac{\mathcal{E}_{2}\left(\phi_{i}, U\right)}{(S+\bar{S})(T+\bar{T})}\right) \\
& \text { sum over images of } E_{2}\left(\phi_{i}, U\right)
\end{aligned}
$$

Kähler potential correction

M.B., Haack, Körs, ‘05
"integrate" one-loop corrected Kähler metric to get oneloop corrected Kähler potential:

$$
\begin{aligned}
& K=-\ln ((S+\bar{S})(T+\bar{T})(U+\bar{U})) \\
& \quad-\ln \left(1-\frac{1}{8 \pi} \sum_{i} \frac{N_{i}\left(\phi_{i}+\bar{\phi}_{i}\right)^{2}}{(T+\bar{T})(U+\bar{U})}-\frac{1}{128 \pi^{6}} \sum_{i} \frac{\mathcal{E}_{2}\left(\phi_{i}, U\right)}{\left(S^{\prime}+\bar{S}\right)(T+\bar{T})}\right) \\
& \begin{aligned}
\partial_{\phi} \partial_{\bar{\phi}} E_{2}(\phi, U)=-\frac{2 \pi^{2}}{U+\bar{U}} E_{1}(\phi, U) \quad \text { sum over images of } E_{2}\left(\phi_{i}, U\right)
\end{aligned} \\
& \Delta K_{\phi \bar{\phi}} \sim \Delta \frac{1}{g^{2}} ?
\end{aligned}
$$

Kähler potential correction

M.B., Haack, Körs, ‘05
"integrate" one-loop corrected Kähler metric to get oneloop corrected Kähler potential:

$$
\begin{aligned}
& K=-\ln ((S+\bar{S})(T+\bar{T})(U+\bar{U})) \\
& \quad-\ln \left(1-\frac{1}{8 \pi} \sum_{i} \frac{N_{i}\left(\phi_{i}+\bar{\phi}_{i}\right)^{2}}{(T+\bar{T})(U+\bar{U})}-\frac{1}{128 \pi^{6}} \sum_{i} \frac{\mathcal{E}_{2}\left(\phi_{i}, U\right)}{(\bar{S}+\bar{S})(T+\bar{T})}\right) \\
& \quad \text { sum over images of } E_{2}\left(\phi_{i}, U\right) \\
& \partial_{\phi} \partial_{\bar{\phi}} E_{2}(\phi, U)=-\frac{2 \pi^{2}}{U+\bar{U}} E_{1}(\phi, U) \\
& E_{1}(\phi, U) \sim \ln \left|\vartheta_{1}(\phi, U)\right|^{2}+\ldots
\end{aligned}
$$

Two-graviton cylinder amplitude

M.B., Haack, Kang, Sjörs '12?

Integrate vertex positions (z)

Lifting formula (from other Euler = 0 surfaces)

$$
\int_{\sigma} d^{2} z\left[f(z)+f\left(I_{\sigma}(z)\right)\right]=\int_{\mathcal{T}} d^{2} z f(z) .
$$

$h_{m n} \quad$ Wick's theorem gives...

$$
\begin{gathered}
\int_{\mathcal{F}_{\sigma}} d^{2} z_{1} d^{2} z_{2} e^{-p_{1} \cdot p_{2} \cdot G_{B}\left(z_{1}, z_{2}\right)}\left\{\left[\partial^{2} G_{B}^{\gamma}\left(z_{12}\right)\right]^{*} G_{\vec{\alpha}}^{F, \gamma}\left(z_{12}\right) G_{\vec{\alpha}}^{F}\left(z_{12}\right)\right. \\
\left.-\left[\partial_{\bar{z}_{2}} \partial_{z_{1}} G_{B}^{\gamma}\left(z_{1}-I_{\sigma}\left(z_{2}\right)\right)\right]^{*} G_{\vec{\alpha}}^{F, \gamma}\left(z_{1}-I_{\sigma}\left(z_{2}\right)\right) G_{\vec{\alpha}}^{F}\left(z_{1}-I_{\sigma}\left(z_{2}\right)\right)\right\} \\
+ \text { c.c. }
\end{gathered}
$$

Integrate vertex positions (z)

State of the art:

Lerche-Nilsson-Schellekens-Warner formula (bosons)
LNSW '87

$$
\int\left(\prod_{n=1}^{N} d^{2} z_{i}\right) \partial G_{B}\left(z_{12}\right) \partial G_{B}\left(z_{23}\right) \cdots \partial G_{B}\left(z_{N 1}\right)=\tau_{2}^{N} c_{N} E_{N}(\tau)
$$

Stieberger-Taylor formula (fermions)
ST'02

$$
\int\left(\prod_{i=1}^{N} d^{2} z_{i}\right) G_{\vec{\alpha}}^{\mathrm{F}}\left(z_{12}\right) \cdots G_{\vec{\alpha}}^{\mathrm{F}}\left(z_{N 1}\right)=-\frac{\left(2 \tau_{2}\right)^{N}}{(N-1)!} \frac{\partial^{N}}{\partial z^{N}} \ln \vartheta_{\vec{\alpha}}(0, \tau)
$$

Integrate vertex positions (z)

State of the art:
Lerche-Nilsson-Schellekens-Warner formula (bosons)
LNSW '87
(reason for existence: holomorphic modular form)
Stieberger-Taylor formula (fermions)
ST'02
(reason for existence: ?
holomorphic, not scalar modular form)

Zeta function regularization

Automorphic form: reflection formula

formally: partition function of twisted boson on torus
formally:
torus "Green's function" but in the twist
e.g. Siegel

Integrate worldsheet moduli (τ)

State of the art:

Lerche-Nilsson-Schellekens-Warner trick
(nice!)

Dixon-Kaplunovsky-Louis unfolding (beautifu!!)

Integrate worldsheet moduli (τ)

Brute force (uglier, but works!):

$$
\begin{array}{r}
\int_{0}^{\infty} d y y^{s-1} \partial_{\gamma} \ln \vartheta_{1}(\gamma, i y) \quad \text { Eisenstein series } \\
I_{2}(s)=\sum_{k=1}^{\infty} \zeta(2 k) \gamma^{2 k-1} \int_{0}^{\infty} d y y^{s-1}\left(E_{2 k}(i y)-1\right) .
\end{array}
$$

twisted
reflection in s

$$
I_{2}(-1)=\frac{\pi^{3}}{24 \sin ^{2}(\pi \gamma)}-\frac{\pi}{12} \psi^{\prime}(\gamma)
$$

Recent string theory results

M.B., Haack, Kang '11
M.B., Haack, Kang, Sjörs '12?

The moduli space metrics of open string moduli in minimally supersymmetric toroidal orientifolds are not renormalized at the one-loop level.
"String nonrenormalization theorem"
About closed strings, we aren't quite done.

Recent AFP approach to tau integrals

Angelantonj, Florakis, Pioline '12

- keeps T-duality manifest
- generalizes Rankin-Selberg-Zagier method
- Selberg-Poincaré series: seed $f(\tau)=\tau_{2}^{s-w / 2} q^{-\kappa}$
difficult analytic continuation, not eigenfunction of Laplacian
- Niebur-Poincaré series: seed $f(\tau)=M_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi i \kappa \tau_{1}}$ modified
better analytic continuation, Whittaker function eigenfunction of Laplacian

Recent AFP approach to tau integrals

Angelantonj, Florakis, Pioline '12

Avoid "unfolding", keep T-duality manifest generalizes Rankin-Selberg-Zagier method

- Niebur-Poincaré series: seed $f(\tau)=M_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi i \kappa \tau_{1}}$

$$
\begin{aligned}
& \int_{\mathcal{F}} d \mu \tau_{2}^{3 / 2}|\eta|^{6} \frac{\hat{E}_{2} E_{4}\left(\hat{E}_{2} E_{4}-2 E_{6}\right)}{\Delta}=-20 \sqrt{2} \\
& d \mu=\frac{d^{2} \tau}{\tau_{2}^{2}}
\end{aligned}
$$

Summary

- Computed one-loop renormalized string effective actions using simple models of extra dimensions
- Some of the techniques are brute force: term-by-term integration of explicit representations, invariances not manifest in intermediate steps
- AFP approach to tau integrals (Niebur-Poincaré series) leads the way to more general techniques

